

Implications of Turfgrass Growth Manipulation

- ➤ Carbon Partitioning & Storage
- Nutrient & Pesticide Requirements

- ➤ Recuperative Potential
- > Turfgrass Performance
- ➤ Playability

Photo courtesy Andrew McDaniel

Hormone called gibberellin (GA) encourages leaf elongation rate (clipping yield)

Environmental
Stimuli cause GA to be produced in this zone of elongation which impact clipping yield

Various factors impact GA production

- Environmental conditions
 - Light quality
 - Water status
 - Temperature
- Mowing practices
- Nitrogen fertilization
- PGRs

How do we manage turf growth rate?

Accelerator Pedal

Brake Pedal

PGR Rate

Nitrogen Availability

- Fertilizer
- Water
- Soil mineralization

Environmental Factors (GP)

- Temperature
- Light quality & quantity
- Mowing practices
- Soil water and oxygen

How do we manage turf growth rate?

Accelerator **Pedal**

Brake Pedal

Nitrogen Availability **PGR** Rate

- Fertilizer
- Water
- Soil mineralization

Environmental Factors (GP)

- Temperature
- Light quality & quantity
- Mowing practices
- Soil water and oxygen

Measuring Clipping Volume To Reduce Mowing

Are recovery efforts working?

Hole Number	Area (m2)	Liters	Liters/100m2
1	280	6	2.14
2	312	18	5.77
3	291	24	8.25
4	326	15	4.60
5	289.7	15	5.18
6	350.8	9	2.57
7	310	18	5.81
8	375.3	9	2.40
9	445.5	12	2.69
LP	200	6	3.00
UP	195	3	1.54
		Average	3.99
lost recent eading date	6/18/2017		
tecent day verage	3.99		
tecent Day coefficient of ariation	0.5192372389		

How does your grass grow and ideal growth rates

Comparing ideal vs actual growth rates to drive nitrogen application decision making.

Clipping volume can estimate clipping yield (weight) and nutrient removal

Weight (lbs/M) It's fine to use US Units (lbs/1000 ft²)

Bentgrass and bermudagrass have similar correlations

Data courtesy Micah Woods, PhD

How much growth is required?

Track cumulative clipping yield & estimate nutrient removal

Roughly 100 gallons of clipping volume per 1000 ft² weighs 35 lbs dry

Assuming 5% of dry tissue is nitrogen, 0.5% is P, and 2% K

Approximate N, P, K removal:

N: 1.8 lbs/M

P: 0.2 lbs/M $(0.45 P_2 O_5)$

K: 0.7 lbs/M (0.84 K₂O)

How much fertilizer did you apply last year?
Was it close to these values?

Sand

Sand Required 2075.7
Sand Applied 1,935.00
Difference 140.7
Scoops Needed 1.56

Wkh#Vdqg#R#P hwhu

Growth rates on a new course

How do we manage turf growth rate?

Accelerator Pedal

Brake Pedal

PGR Rate

Nitrogen Availability

- Fertilizer
- Water
- Soil mineralization

Environmental Factors (GP)

Temperature

- Mowing practices
- Light quality & quantity
- Soil water and oxygen
- Soil nutrient levels
- Other factors

Soil water availability strongly affects clipping yield

- Stomata Close
- Leaf growth slows
- Root growth increases
- Cell division slows
- Cells accumulate sugars
- Leaves and roots die
- Cells break/die
- Plant dies

Shade alters light quantity and quality

Grass tries to grow over the top of the shade

Increased expression of GA

PGRs can help suppress GA over-production

Photo and data courtesy of Jason Haines

Like in shade, there is a disconnect between sugar production and clipping production

Growth rate is greatest when soil nitrogen is being release by microbes

Temperature still has a big impact on nitrogen responsiveness – Picking the gear

Fertilizer and growth response of bermudagrass

Nitrogen responsiveness varies with temperature and species

How do we manage turf growth rate?

Accelerator Pedal

Brake Pedal

PGR Rate

Nitrogen Availability

- Fertilizer
- Water
- Soil mineralization

Environmental Factors (GP)

- Temperature
 - Light quality & quantity
- Mowing practices
- Soil water and oxygen

Mounting a crop sensor to a mower to estimate N and water status

Create maps to variable rate N apps or adjust PGR applications

How do we manage turf growth rate?

Accelerator Pedal

Brake Pedal

PGR Rate

Nitrogen Availability

- Fertilizer
- Water
- Soil mineralization

Environmental Factors (GP)

- Temperature
- Light quality & quantity
- Mowing practices
- Soil water and oxygen

Goals for a PGR program

- Sustain growth suppression for the season
 - Plant health, green speed, nutrient requirements
- Avoid too much growth suppression
 - Poor recovery, phytotoxicity
 - Wastes time and product (money)

Several factors impact PGR performance

PGR Duration: Air temperature (GDD),
 species, mowing practices

PGR Intensity: Application rate*

*Applications that are more frequent than ideal will increase amount of suppression

PGR Duration is shorter at higher temp

Comparing PGR Performance on cool-season greens

Active Ingredient	Common Name	Growth Suppression	Duration of Effect	Ideal GDD
Trinexapac-ethyl	Primo Maxx	20%	800 GDD	230 GDD
Paclobutrazol	Trimmit	30-50%*	850-950 GDD*	280-310 GDD*
Flurprimidol	Cutless	20-30%*	600-800 GDD*	210-270 GDD*
Prohexadione-Ca	Anuew	25%	840 GDD	280 GDD
Flurprimidol + Trinexapac-ethyl	Legacy	20-35%*	810-910 GDD*	270-300 GDD*
Flurprimidol + Paclobutrazol + Trinexapac-ethyl	Musketeer	25-40%*	880 GDD	290 GDD

^{*} Range from low to high application rate

PGRs are less effective at putting green height of cut

PGRs are more effective on collars because the grow slower than greens

- PGR removed slower during mowing
- Collar height turf has lower canopy temperature
- Easier for PGR to shut down growth rate

PGRs are less effective at putting green height of cut

PGRs are more effective on collars because the grow slower than greens

- PGR removed slower during mowing
- Collar height turf has lower canopy temperature
- Easier for PGR to shut down growth rate

Bentgrass Fairway Models: Much longer intervals and more suppression than greens

Active Ingredient	Common Name	Growth Suppression	Ideal GDD
Trinexapac-ethyl	Primo Maxx	55-80%	350-380
Paclobutrazol	Trimmit	70-80%	480-640
Flurprimidol	Cutless	30-40%	380-410
Prohexadione-Ca	Anuew	60-75%	350-380
Flurprimidol + Trinexapac- ethyl	Legacy	40-70%	320-390
Flurprimidol + Paclobutrazol + Trinexapac-ethyl	Musketeer	55-70%	350-400

Absolute yield is most important <u>but</u> PGRs measured as relative growth suppression

- You likely have growth rate goals -> Clipping volume
- PGR impact growth changes with growth rate

Collaborative Ultradwarf PGR Research

 PGR GDD models successfully developed in NC, TN, MS, and AL in 2016 and 2017

Anuew Applications

App. Rate:

8 oz/A

Peak Suppression:

50%

95 GDD

Base 10C

Re-Application Interval:

125 GDD

No Rebound Phase

Primo Maxx Applications

App. Rate:

4 fl oz/A

Peak Suppression:

50-70%

165-175 GDD

Base 10C

Re-Application Interval:

220 GDD

No Rebound Phase

Warm-season PGR intervals sound the same but are very different (base 10C)

Typical High and Low	Average Air Temp	GDD (Base 10C)	Primo Maxx (220 GDD)	Anuew (125 GDD)
50-30°F	4°C	0	Long Time!	Long Time!
70-50°F	16°C	6	36 days	21 days
80-60°F	21°C	11	20 days	11 days
90-70°F	27°C	17	13 day	7 days
100-80°F	32°C	22	10 day	6 days

Rate effects are similar to C_3 grasses. \uparrow rate = \uparrow Suppression

PGR application rate, air temperature, and mowing program impact PGR performance

PGR Duration: Air temperature (GDD),
 species, mowing practices

PGR Intensity: Application rate*

*Applications that are more frequent than ideal will increase amount of suppression

GreenKeeperApp.com

Decision-support tool to guide turf agronomics

How do we manage turf growth rate?

Accelerator Pedal

Brake Pedal

PGR Rate

Nitrogen Availability

- Fertilizer
- Water
- Soil mineralization

Environmental Factors (GP)

- Temperature
- Light quality & quantity
- Mowing practices
- Soil water and oxygen

