Feasibility of Solar Energy in Golf Course Operations

Andrew J. Jorgensen, CGCS
On Top of the World Communities, Inc.
Ocala, Florida

Benefits of Solar

- Lock in energy prices, avoid price increases
- Secure investment
- Increased property value
- Federal tax credit
- Positive public relations
- Sustainability
- Cold weather climates

- Started with a 22.4kw system on a model home in 2008.
- Net-zero install
- No power bill ever
- Internet monitoring

Summer of 2011

- 297, 190-watt panels
- 9 inverters
- 56.43kw of energy
- Designed to be 115% of our needs
- Actual 118%
- Ran out of space

- System has no batteries/storage if grid goes down, so do we
 - Batteries are very expensive
 - Batteries require on-going maintenance
 - Batteries have shelf life
 - Batteries require a lot of space
 - New technology may make this feasible in the future

- Return on investment originally calculated at 13.3 years, reality was about 12 years
 - System produced slightly more than expected
 - Energy costs have increased beyond projections
- No power bill since September 2011
 - Received about \$12,600 in payments
- About 5 years remaining on ROI

- 96.8kw system installed 2015 on recreation center - Ocala
- 99.6kw system installed 2016 on recreation center – Clearwater
- 99.4kw system installed 2019 on a new recreation center (\$1.43/watt!)
- New neighborhood under construction with solar standard on all homes

- Temporary setup with storage
- Used for 7 months while power was disconnected
- Operated bathroom lights, fans and irrigation satellite

Why golf course maintenance facilities?

- Hidden from sight
- Usually have large roofs with minimal obstructions
 - Compared to clubhouse with vents, exhaust fans, etc.
- Higher energy use compared to cart storage facility or clubhouse
 - Carts using "smart chargers"
 - Clubhouse energy demand is typically in natural gas
 - "Motel 6" mentality in clubhouses
 - Clubhouse usage is flat or declining due to energy wise appliances,
 LED lights

Why golf course maintenance facilities?

- Pump stations use too much energy, have higher demand
 - No roof large enough to meet initial or ongoing demand
 - Ground mount would require too much area
 - Usually visible from the golf course
 - Golf ball damage
 - Screening to hide building
- Off-site energy production?

Why golf course maintenance facilities?

- Maintenance industry is changing more to plug in
 - Additional computers
 - Electric utility vehicles
 - Electric mowers
 - Electric rollers
 - Electric blowers / weedeaters
 - Air conditioning
 - Washwater recycling systems
- We are no longer a barn!

How do you get there?

- Before anything else: have an energy audit performed on your (entire) facility
 - Solar or not you will see savings
 - Typically free from energy provider
 - Review billing schedules (demand vs. non-demand)
- First in 2007 reduced expenses about \$200/month
 - Recommended timers, photocells, occupancy sensors, remove two drink machines, promote culture of conservation
- Second in 2010 for solar rebate
 - Concluded we were doing everything correct, no room for conservation

How do you get there?

- Site selection considerations
 - Aesthetics does your HOA allow this? Neighbors? City/county?
 - Insurance requirements is it insurable? What is on-going cost?
 - Energy provider requirements will they force you to update to current code?
 - Feasibility
 - Energy provider will score you for eligibility for install
 - We were 97.88% ideal almost perfect
 - Future growth of adjacent trees
 - Age of building and roof

Funding

- Work with installer to find rebates, may be multiple
 - We received a rebate for about 1/3 of the total cost
 - PACE Residential Funding in certain states
 - Low-interest, fixed rate loan
 - May be similar program in your area
- Federal corporate tax credit on energy efficient installs
 - Possibly going away
- Our initial cost was about \$6/watt, tax credit and rebate brought it to \$2.67/watt.
 - Much easier to ask for approval at this point

Installation

- Obtain multiple quotes
 - Make sure they are bidding apples to apples
 - Efficiency (warranty) rating of panels –
 15, 20, 30 years
- Ask questions!
 - Age of business and references
 - Warranty on equipment and install
 - Attachment method
 - Timeline for installation
 - Safety procedures / Insurance
 - Third party Certified electricians

Installation

- Be involved with every step!
 - You will be THE person for this project for everyone that comes to your shop
 - You will be asked many questions by everyone that sees the system
 - You could even be asked by the USGA to write a Case Study or by GCSAA to do a webinar and speak at GIS
 - Take a lot of photos every angle, aerial, ground, close-ups, etc....

Maintenance

- Very little needs to be done
 - Wash with hose-end cleaners and a lift annually
 - More often in arid climates
 - Spare fuses (\$8 from Amazon)

Talk about it!

- Press releases
- Magazine articles
- Host an open house for your community
- Share information
- Provide updates in the future

Key Points to Consider

- Perform an energy audit first and foremost
- Check your pricing schedule demand vs. non-demand
- Consider it an investment
 - 160% return on initial investment over 30 years,
 - 270% in 50 years
 - Not including future energy increases
- When everyone else still has a power bill, you won't!
- Excess power sold is dividends received each year

Andrew J. Jorgensen, CGCS On Top of the World Communities, Inc. Ocala, Florida

Andy_Jorgensen@otowfl.com www.ontopoftheworld.com/sustainable-practices @LowBudgetSupt