Silicon Fertilization – What's up with THAT?

Beth Guertal
Auburn University

What's an essential element?

- Plant needs it to grow and reproduce (complete life cycle).
- Nothing else can substitute for it.

Essential Elements (17)

Carbon

Hydrogen

Oxygen

Nitrogen

Phosphorus

Potassium

Calcium

Magnesium

Sulfur

Iron

Molybdenum

Copper

Manganese

Chloride

Boron

Zinc

Nickel

'Quasi' Essential Elements

- Silicon considered a beneficial substance by the AAPFCO
- Cobalt
- Aluminum
- Vanadium

So....Silicon

- Proven links to disease suppression.
- Possible links to improving turfgrass wear.
- Possible links to leaf blade stiffness and better ball roll.

How does it get into the plant?

Actively

Passively

Where does plant Si come from?

ORGANIC

http://www.microlabgallery.com/gallery/PhytolithsLawn3.aspx

INORGANIC

WHY silicon? What does it do in the plant?

- Mechanical barrier Si beneath cuticle/in cell walls.
- Faster and stronger activation of defense genes/defense enzymes.
- Photosynthesis/anti-oxidant systems improved.

Debona, Rodrigues and Datnoff, 2017

Which Plants?

How did we get to turfgrass?

Magnaporthe grisea – rice blast

Pyricularia oryzae (Magnaporthe grisea) – gray leaf spot

Does Si help reduce GLS?

Brecht, Datnoff, Kucharek & Nagata, 2004

Does it always work?

Brecht, Datnoff, Kucharek & Nagata, 2004

What about turfgrasses we use in golf?

Turfgrass	Disease	Reduction?	
Zoysiagrass	Leaf blight	Υ	
Creeping bentgrass	Root rot, brown patch, Dollar spot	Y	
KY bluegrass	Powdery mildew	Υ	
Bermudagrass	Leaf spot (Bipolaris)	Υ	
St. Augustinegrass	Gray leaf spot	Υ	
Perennial ryegrass	Gray leaf spot	Υ	

Leaf stiffness, wear and ball roll

Relationship between Si and leaf erectness in rice plants

at flowering. (Yoshida et al., 1969)

Si supply (mg SiO ₂ L ⁻¹ as sodium silicate)						
0 =	→ 40 ■	200*				
Leaf angle (between flowering stem and leaf tip)						
77	69	22				

^{*}Soil solution Si is usually around 3-17 mg Si L⁻¹

Ball Roll & Si?

Relative ball roll as measured via a modified stimpmeter. Numbers are the average of six rolls, with half in opposite directions. TifEagle putting green.

	May 25	June 1	June 4	June 7	June 11	June 18	
	golf ball roll (inches)						
Si + N and K	55 a	59 a	56 a	66 a	46 a	53 a	
N and K only	56 a	58 a	58 a	73 a	47 a	54 a	
	•						
	June 22	June 25	June 28	July 5	July 10		
	golf ball roll (inches)						
Si + N and K	61 a	60 a	62 a	64 a	59 a		
N and K only	59 a	60 a	69 a	64 a	65 a		

Guertal, 2016

Turfgrass Wear & Si?

- Seashore paspalum 'Sea Isle 2000'
- Si at 1.1 or 2.2 kg Si ha⁻¹
 (1 or 2 lb Si acre⁻¹) –
- multiple applications

Silicon did not enhance wear tolerance or reduce injury of seashore paspalum.

Trenholm, Duncan, Carrow & Snyder, 2001

Sources

Calcium silicate slag -

From the reduction of phosphate rock with coke in electric arc furnaces.

Wollastonite – mineral widely

used in industrial processes.

Potassium silicate -

From potassium silicate glass, produced in Furnaces by melting sand with potassium carbonate.

Rates

- Up to 10 metric tons calcium silicate slag ha⁻¹ – 2000 kg Si ha⁻¹ (1,780 lbs Si acre⁻¹).
- Typical recommended rate in turfgrass work? 11-18 lb Si 1,000 ft⁻².

THINK PRODUCT VERSUS NUTRIENT

So....Si?

- Little to no field evidence that Si helps with leaf stiffness,
 ball roll or improved wear tolerance.
- Evidence for reductions with GLS, in several turfgrasses.
- BUT variable with turfgrass species, disease and background soil Si levels.
- Some evidence for improvements in salt or drought tolerance.
- Most work is with Ca Silicate slag need work with other products.