

SAN DIEGO 2019 CONNECT. DISCOVER. ELEVATE.

GCSAA EDUCATION CONFERENCE | TRADE SHOW | GCSAA GOLF CHAMPIONSHIPS

February 2-7 | San Diego Convention Center

PRESENTING PARTNERS

Subsurface Drip Irrigation for Golf Course Water Conservation

Bernd Leinauer, PhD New Mexico State University
Joel Krause, Golf Course Superintendent, Eagle Crest Golf and
Resort, Canton, Michigan

SAN DIEGO 2019 CONNECT. DISCOVER. ELEVATE.

GCSAA EDUCATION CONFERENCE

Subsurface Drip Irrigation for Turfgrass Areas

SAN DIEGO 2019 CONNECT. DISCOVER. ELEVATE.

GCSAA EDUCATION CONFERENCE

SAN DIEGO 2019 CONNECT. DISCOVER. ELEVATE.

GCSAA EDUCATION CONFERENCE

ONFERENCE

Bunker surrounds and steep slopes

Fit any shape

Homeowners Professionals Golf Agriculture Online Store

You Are Here: Home > Landscape Irrigation > Products > Drip Tubing & Distribution Components > XFS Sub-Surface Dripline

Product Information

Spray Bodies

Spray Nozzles

Rotors

Impacts

Valves

Controllers

Pump Start Relays

Central Controls

Drip Control Zone

Drip Distribution

Drin Emission

XFS Subsurface Dripline

With Copper Shield™ Technology

Rain Bird® XFS Dripline with Copper Shield™ for sub-surface drip irrigation is the latest innovation in the Rain Bird Xerigation® Family. Rain Bird's patent-pending Copper Shield Technology protects the emitter from root intrusion, creating a long-lasting, low maintenance sub-surface drip irrigation system for use under turf grass or shrub and groundcover areas.

ABOUT SUSTAINABILITY NEWS EVENTS TESTIMONIALS IMAGE LIBRARY CONTACT US Q

LANDSCAPE

▶ HOME

▶ CATALOG

▼ PRODUCTS

Driplines

Techline® HCVXR

Techline® HCVXR-RW and RWP

Techline® CV

Techline® DL

TechLock Fittings

12mm Dripline Fittings

Líneas de Goteo

Dripline Components

Filters

Valves

Water Meters

Controllers

Point Source Components

DRIP SOLUTIONS

Home / Landscape & Turf / Products / Driplines / Techline® HCVXR

Techline® HCVXR

Technical Ordering Resources

Techline® HCVXR (17mm Dripline)

A revolutionary new dripline which provides superior root intrusion resistance. It's also the longest lasting solution that continues to function even after years of use because Cupron®copper oxide is infused in the material used to make the emitter. In addition to the copper oxide, Techline HCVXR has a unique patented emitter design with physical root barrier for even more root intrusion protection.

SAN DIEGO 2019 CONNECT. **DISCOVER.** ELEVATE.

GCSAA EDUCATION CONFERENCE

BE BOLD. Shape the Future.
New Mexico State University
aces.nmsu.edu

SAN DIEGO 2019 CONNECT. DISCOVER. ELEVATE.

GCSAA EDUCATION CONFERENCE

Built on Innovation®

PRODUCTS

PROFESSIONALS

GOLF

HOMEOWNERS

RESIDENTIAL & COMMERCIAL IRRIGATION

ECO-MAT®

Subsurface Irrigation: Under Turf, Gardens, Small Shrubs

UNMATCHED UNIFORMITY AND WATER SAVINGS

PHOTOS

VIDEOS OVERVIEW MODELS SPECS DOCUMENTS

ECO-MAT SUBSURFACE IRRIGATION: HOW TO INSTALL ECO-MAT

SUBSURFACE DRIP IRRIGATION (SDI)

Typical design:

- 4" (10 cm) depth
- 1' (30 cm) spacing

Air release valve Flush valve Emitter Drip Line Water meter Control (optional) Valve Pressure Regulator Filter

Toro, 2000

SAN DIEGO 2019 CONNECT. DISCOVER. ELEVATE.

GCSAA EDUCATION CONFERENCE

FLOW PER 100 FEET

 EMITTER SPACING	0.33 EMITTER		0.53 EN	MITTER	0.77 EN	MITTER	1.16 EMITTER		
	GPH	GPM	GPH	GPM	GPH	GPM	GPH	GPM	
12"	33.0	0.55	53.0	0.88	77.0	1.28	116.0	1.93	
18"	22.0	0.37	35.3	0.59	51.3	0.86	77.3	1.29	

MAXIMUM LENGTH OF A SINGLE LATERAL (FEET)

EMITTER SPACING		-2"				18"				24"	
EMITTER FLOW (GPH)		0.33	0.53	0.77	1.16	0.33	0.53	0.77	1.16	0.77	1.16
INLET PRESSURE	25 psi	237	173	136	103	335	246	192	146	244	184
	30 psi	327	240	187	142	464	341	266	203	338	258
	35 psi	385	282	221	168	546	401	314	239	400	304
	40 psi	429	315	247	187	611	449	351	267	446	340
	45 psi	467	342	268	203	663	488	381	290	486	370
	50 psi	499	366	287	218	710	521	408	311	520	396
	55 psi	528	387	303	230	752	552	432	329	550	418
	60 psi	554	406	318	241	788	579	453	345	578	440

TYPICAL DESIGN LAYOUTS

TYPICAL DESIGN LAYOUTS

System Installation

SAN DIEGO 2019 CONNECT. DISCOVER. ELEVATE.

System Installation

System Installation

SAN DIEGO 2018 y stem Installation

GCSAA EDUCATION CONFERENCE

SAN DIEGO 2019 CONNECT. DISCOVER. ELEVATE.

GCSAA EDUCATION CONFERENCE

Irrigation effect on brown patch (Rhizoctonia sp.) occurrence

Problems

- Production
- Installation
- Filtration
- Root intrusion
- Maintenance

Striping

Roots

Installation

Clogging

Las Campanas, NM

- Santa Fe, NM 7,000 ft elevation
- 14" average precipitation
- 36 holes
- Budget constraints
- Irrigation water conservation
- 2015 decision to install SDI
- Supported by USGA, Hunter, Netafim, Rainbird, Toro

Problem: Overspray

Materials and Methods

- 14 tee boxes (back tees): 240 760 ft²
- USGA type construction/rootzone
- Creeping bentgrass + annual bluegrass
- Mowing height

- Hunter ECO-MAT (0.6 gl hr⁻¹)
- Netafim XCVXR (0.53 gl hr⁻¹)
- Rainbird XFS (0.42 gl hr⁻¹)
- Toro DL 2000 (0.5 gl hr⁻¹)
- 2 controls (DU 0.69 and 0.79)
- 5 inches deep
- Trenching vs. sod removal

SAN DIEGO 2019 CONNECT. DISCOVER. ELEVATE.

Installation April 28th 2016

Sod removal

Trenching into existing turf

Installation April 26 – Photo taken August 5th

Problem: Drip lines installed too deep

August 5th 2016

October 5th 2016

Las Campanas, Tee #6

Due to publicity and great success, Hunter and Netafim SDI were added to the test in 2017

SAN DIEGO 2019 CONNECT. DISCOVER. ELEVATE.

GCSAA EDUCATION CONFERENCE

Keeping up with the maintenance

SAN DIEGO 2019 CONNECT. DISCOVER. ELEVATE.

GCSAA EDUCATION CONFERENCE

golf industry show

GCSAA EDUCATION CONFERENCE

Summary

References (1)

- Schiavon, M., B. Leinauer, M. Serena, B. Maier, and R. Sallenave. 2014. Plant Growth Regulator and Soil Surfactants' Effects on Saline and Deficit Irrigated Warm-season Grasses: I. Turf Quality, Color Retention, and Soil Moisture Distribution. <u>Crop Science</u> doi: 10.2135/cropsci2013.10.0707
- Schiavon, M., B. Leinauer, M. Serena, B. Maier, and R. Sallenave. 2014. Plant Growth Regulator and Soil Surfactants' Effects on Saline and Deficit Irrigated Warm-season Grasses: II. Pigment Content and Superoxide Dismutase Activity. <u>Crop Science</u>. doi: 10.2135/cropsci2013.10.0708
- Ganjegunte, G., B. Leinauer, M. Schiavon, and M. Serena. 2013. Using Electro-Magnetic Induction to Determine Soil Salinity and Sodicity in Turf Root Zones. <u>Agronomy Journal</u> 105:836–844.
- Sevostianova, E., B. Leinauer, R. Sallenave, D. Karcher, and B. Maier. 2011. Soil Salinity and Quality of Sprinkler and Drip Irrigated Warm-Season Turfgrasses. <u>Agronomy Journal</u> 103:1773-1784.
- Sevostianova, E., B. Leinauer, R. Sallenave, D. Karcher, and B. Maier. 2011. Soil Salinity and Quality of Sprinkler and Drip Irrigated Cool-Season Turfgrasses. <u>Agronomy Journal</u> 103:1503-1513
- Schiavon, M., B. Leinauer, E. Sevostianova, M. Serena, and B. Maier. 2011. Warm-season turfgrass quality, spring green-up, and fall color retention under drip irrigation. Online. Applied Turfgrass Science doi:10.1094/ATS-2011-0422-01-RS.

References (2)

- Serena, M., B. Leinauer, M. Schiavon, B. Maier, and R. Sallenave. 2014.
 Establishment and Rooting Response of Bermudagrass Propagated with Saline Water and Subsurface Irrigation. Crop Science 54: 827-836.
- Schiavon, M., B. Leinauer, M. Serena, R. Sallenave, and B. Maier. 2013. Establishing tall fescue and Kentucky bluegrass using subsurface irrigation and saline water. **Agronomy Journal** 105:183-190.
- Schiavon, M., B. Leinauer, M. Serena, R. Sallenave, and B. Maier. 2012.
 Bermudagrass and Seashore Paspalum Establishment from Seed Using Differing Irrigation Methods and Water Qualities. <u>Agronomy Journal</u> 104:706-714.
- Schiavon, M., M. Serena, R. Sallenave, B. Leinauer, and J. Baird. IN PRESS. Seeding date and irrigation system effects on establishment of warm-season turfgrasses.

 Agronomy Journal.
- Sevostianova, E. and B. Leinauer. 2014. Subsurface-Applied Tailored Water: Combining Nutrient Benefits with Efficient Turfgrass Irrigation. <u>Crop Science</u> 54:1926-1938. doi:10.2135/cropsci2014.01.0014

Acknowledgements

Acknowledgements

Las Campanas Crew:

Tom Egelhoff Joel Krause Milo

