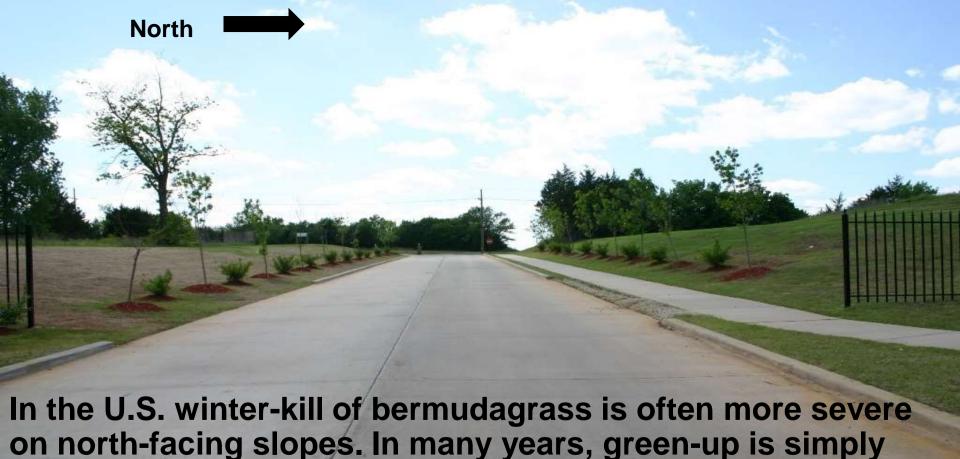

Developing Bermudagrass Cultivars with Improved Winter-Hardiness

Dennis Martin, PhD
Professor & Turfgrass Specialist
Oklahoma State University

Bermudagrass Zones

Bermudagrass Winter-kill in the transition zone Stillwater Country Club, April 15, 2010

Winter-kill, NTEP Trial at Stillwater - May 2010



Cold-hardiness sometimes confused with winter color retention

What is winter-kill?

- Winter-kill part or all of a grass plant or turfgrass stand dies during the winter.
- It's a relative term, can apply to just a single plant, portions of plants or to the grass at the stand level.
- Includes damage from drought during winter, low temperature injury, soil saturation, ice encasement or any combination of these stresses during the winter.

on north-facing slopes. In many years, green-up is simply delayed on north facing slopes due to less incoming sunlight, and slower soil heating.

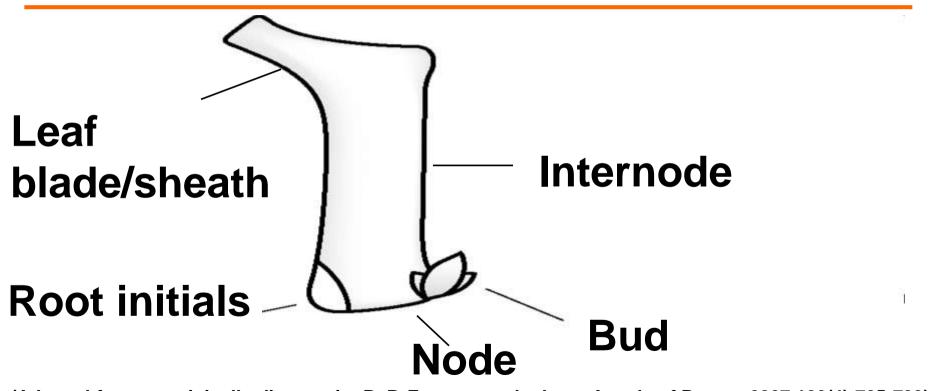
Low cutting height, traffic, soil compaction and shade interacted to pre-dispose this bermudagrass teebox to winter-kill.

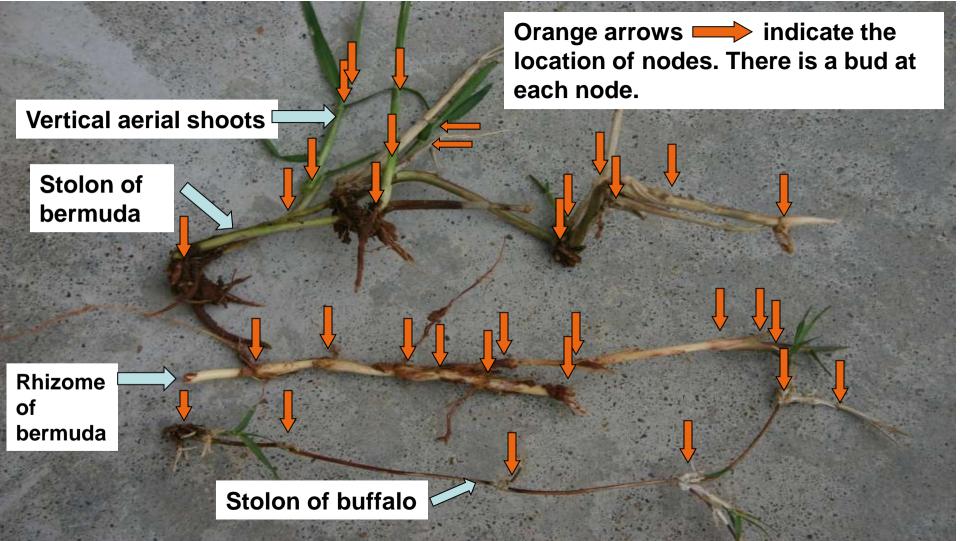
Tifway winter-killed in what perhaps was the outer freeze/thaw zone of a snow drift over several days. The area in the center was protected by a large snow drift.

Truckster drove over slush pile, traffic triggered mechanical/freeze injury to bermudagrass. A single event.

Traffic on path interacted with snow/ice to cause winter-kill

Heavy traffic and compaction likely predisposed this sports field to winter-kill


In an area of less traffic just a few feet away, 100% live green cover. Note rhizomes.



Green shoots in spring are produced from lateral buds that were dormant at nodal areas that survived the winter

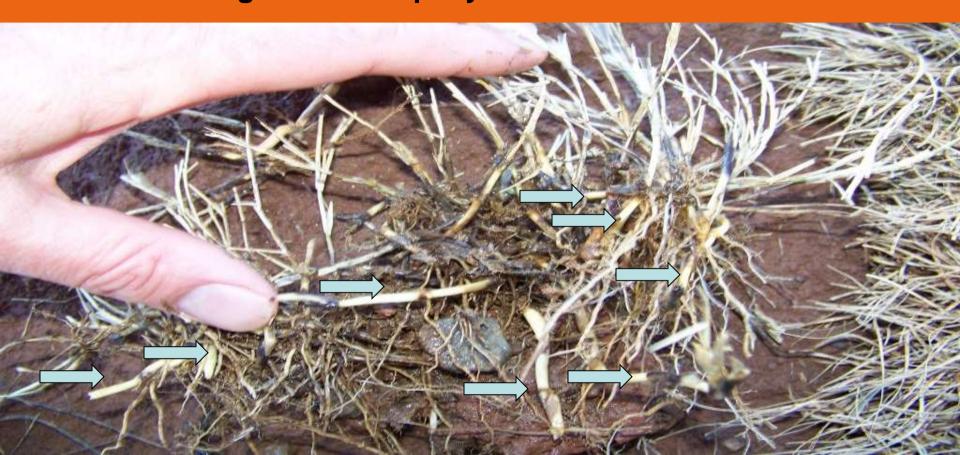
A Grass Phytomer - a phytomer is the basic repeating building block of the grass plant.

(Adapted from an originally diagram in: B. P. Forester and others, Annals of Botany 2007 100(4):725-733)

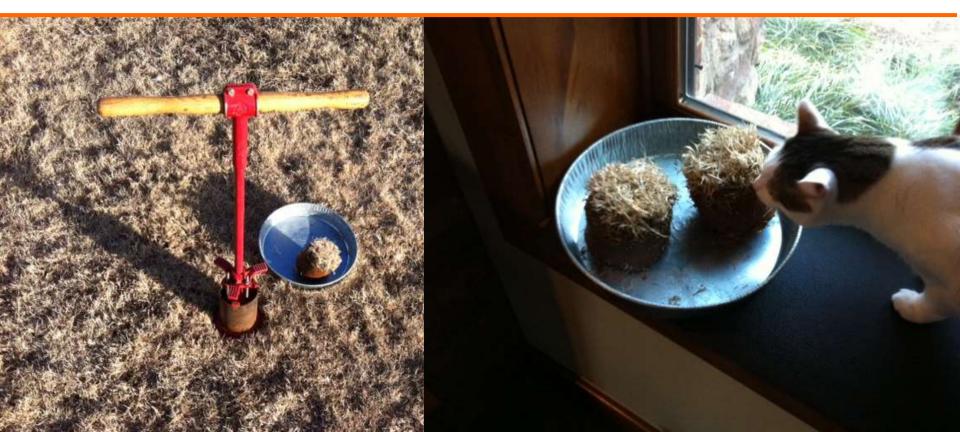
In winter, can you tell if the aerial shoots, stolons and rhizomes of warm-season grasses are alive or dead? Yes you can!

Example: Jan 25, 2010 canopy brushing reveals high number of green aerial shoots in American buffalograss

Firm, green, white, red or purple internodes are alive at this time! Soft, mushy, brown or straw tan internodes are dead!



Canopy brushing and close examination revealed no surviving vertical aerial shoots or stolons in the area of common bermudagrass. If little to no survival of aerial shoots is found, wash soil from plug and look for live white rhizomes

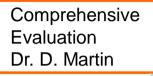


Plug of common bermuda extracted, look for live, firm white rhizomes. Washing soil from the plug can be helpful.

Several large, firm, white rhizomes have survived (see \Longrightarrow arrows). This stand had delayed greenup due to loss of aerial shoots to winter-kill but regenerated rapidly from the rhizomes

Window Sill Method of Assessing Damage During Winter

OK State Breeding Program


The turf bermudagrass breeding and genetics research program at OSU was initiated in the 1980s by Dr. Charles M. Taliaferro.

The goal of the program is to develop high quality, cold-tolerant, seed and vegetatively propagated bermudagrass cultivars for the transition zone. Recently, shade, drought and salinity resistances have been targeted for improvement.

OK State Development Team

Drought resistance Greens-type Dr. J. Moss

Breeding

Disease Resistance Dr. N. Walker

Molecular physiology Dr. K. Su Genetics Res. Dr. Y. Wu

Germplasm
Dr. Y. Wu Shade resistance

+

Dr. C. Fontanier

Common Bermudagrass

Image credit: Dr. Yanqi Wu

African Bermudagrass

Image credit: Dr. Charles Taliaferro

Genetic Lottery in Breeding Clonal Varieties

Image credit: Dr. Yanqi Wu

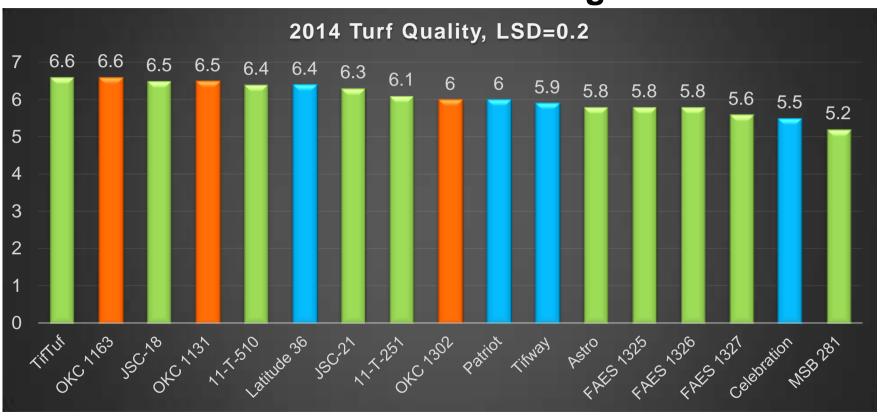
Large numbers in the field

Great material passes the tests

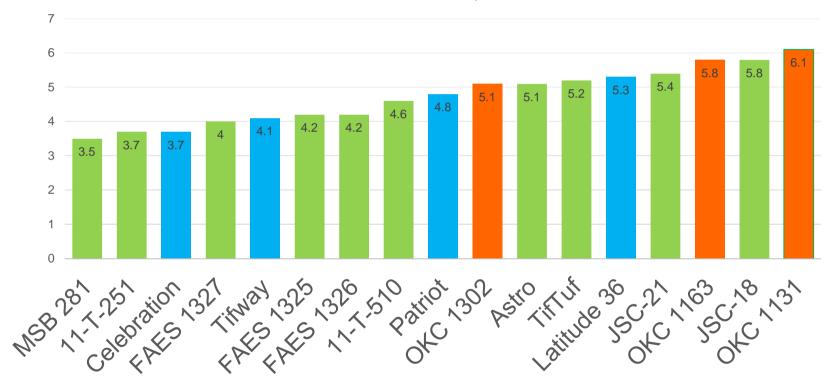
Testing of putting-green type bermudagrasses

Winter-kill, NTEP Trial at Stillwater - May 2010

Cold Chamber Test Findings


Variety name	Temp (°F) killing 50% of plants		
Latitude 36	16.88 b		
NorthBridge	15.98 b		
Midlawn	17.06 b		
Tifway	18.50 a		
From J. A. Anderson (2010)			

Turf quality ranking of 31 clonal and seeded bermudagrasses in the 2007-2012 NTEP National Test


Entry	2007	2008	2009	2010	2011
Latitude 36	1	1	2	2	2
NorthBridge	3	1	1	1	1
Tifway	2	1	2	3	4
NuMex- Sahara	31	31	31	31	31

Quality of Bermudagrass Clonal Entries at 16 locations 2013-2018 NTEP Bermudagrass Test

🖿 🔁 📮 📮 🔁 2014 Spring NTEP Bermudagrass Test at 10 locations

Winterkill (%) Measured Spring 2014 – NTEP Trials

Entry ID	West Lafayette, IN	Lexington, KY	Average
OKC 1131	4.0	25.0	14.5
Patriot	11.7	50.0	30.8 - Standard
OKC 1163	58.0	36.7	47.3
JSC-18	37.3	60.0	48.7
Latitude 36	41.3	73.3	57.3 - Standard
Astro	40.7	83.3	62.0
OKC 1302	35.7	91.0	63.3
JSC-21	68.3	78.3	73.3
TifTuf	82.7	94.0	88.3
FAES 1326	84.7	93.0	88.8
MSB 281	83.0	97.7	90.3
11-T-251	93.0	96.3	94.7
11-T-510	99.0	95.0	97.0
FAES 1325	97.3	97.7	97.5
Celebration	97.3	98.7	98.0 - Standard
Tifway	98.0	99.0	98.5 - Standard
FAES 1327	99.0	98.7	98.8
LSD	45.5	13.9	23.8

Funding Acknowledgements

Oklahoma Turfgrass Research Foundation

United States Department of Agriculture National Institute of Food and Agriculture

Thank you GCSAA!

Questions?

 Dennis Martin, Prof & Turf Specialist Oklahoma State University Phone:405.744.5419

Email:dennis.martin@okstate.edu

